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The controller protein of the Esp1396I restriction–modification

(R–M) system binds differentially to three distinct operator

sequences upstream of the methyltransferase (M) and endo-

nuclease (R) genes to regulate the timing of gene expression.

The crystal structure of a complex of the protein with two

adjacent operator DNA sequences has been reported;

however, the structure of the free protein has not yet been

determined. Here, the crystal structure of the free protein is

reported, with seven dimers in the asymmetric unit. Two of the

14 monomers show an alternative conformation to the major

conformer in which the side chains of residues 43–46 in the

loop region flanking the DNA-recognition helix are displaced

by up to 10 Å. It is proposed that the adoption of these two

conformational states may play a role in DNA-sequence

promiscuity. The two alternative conformations are also found

in the R35A mutant structure, which is otherwise identical to

the native protein. Comparison of the free and bound protein

structures shows a 1.4 Å displacement of the recognition

helices when the dimer is bound to its DNA target.
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1. Introduction

Bacterial restriction–modification (R–M) systems act as a

primitive ‘immune system’ that serves to protect the cell from

invasion by foreign DNA. R–M systems encode a restriction

endonuclease and a DNA methyltransferase. The DNA-

sequence-specific methyltransferase (M) protects the host

DNA from cleavage by the associated restriction enzyme (R);

the specific methylation pattern of the host R–M system allows

the discrimination of ‘self’ from ‘nonself’ DNA (Wilson &

Murray, 1991). The expression of M and R genes must be

subject to temporal control such that restriction activity is

delayed with respect to methylation, so that the bacterial

genome can be methylated and thus protected from the

possibility of subsequent endonuclease activity. This delay is

often accomplished by means of a regulator (or controller)

protein, the C protein, which is required for effective

transcription of its own gene and for transcription of the

endonuclease (R) gene found on the same operon (Tao et al.,

1991; Ives et al., 1992; Rimseliene et al., 1995; Vijesurier et al.,

2000; Cesnaviciene et al., 2003; Knowle et al., 2005).

Measurements of C-dependent transcriptional activity in

vitro have shown the time-dependence of the activity of this

switch (Bogdanova et al., 2008) and in vivo experiments have

directly demonstrated a time lag in the expression of the

endonuclease with respect to the methyltransferase (Mruk &

Blumenthal, 2008). Previous biochemical and biophysical

studies have revealed the general features of this genetic

switch in the AhdI R–M system (Streeter et al., 2004;

McGeehan et al., 2006; Papapanagiotou et al., 2007). In the



R–M system Esp1396I, it has recently been shown that the C

protein has an additional function of binding to a high-affinity

site upstream of the M gene to repress expression of the

methyltransferase, thus forming part of an intricate control

network in the regulation of R–M activity (Bogdanova et al.,

2009).

The first controller-protein structure to be reported was that

of C.AhdI (McGeehan et al., 2004, 2005), which revealed a

dimeric �-helical protein with a helix–turn–helix motif. A

similar structure was subsequently reported for C.BclI

(Sawaya et al., 2005). More recently, we reported the first

structure of a controller protein (C.Esp1396I) bound to its

DNA operator site (McGeehan et al., 2008), in which two

dimers were bound adjacently on the DNA to form a tetra-

meric complex. To enable comparison of the free and bound

forms of the protein and to identify possible conformational

changes when bound to DNA, we have crystallized and solved

the structure of the native C.Esp1396I protein dimer. The

results show that there is conformational heterogeneity of a

small loop region adjacent to the DNA-sequence recognition

helix. In addition, we report that the structure of a mutant of

C.Esp1396I in which a key residue (Arg35) has been mutated

shows a similar heterogeneity.

2. Materials and methods

2.1. Crystallization

The expression and purification of native C.Esp1396I was

performed as described previously (McGeehan et al., 2008),

with the exception that the six-histidine tag was retained.

Briefly, the protein was overexpressed from plasmid pET-28b/

esp1396IC in Escherichia coli BL21 (DE3). The cells were

then harvested and disrupted by sonication. Cell lysates were

applied onto a His-Trap HP column in high-salt buffer

[500 mM NaCl, 20 mM imidazole, 40 mM Tris–HCl pH 8,

5%(w/v) glycerol] and eluted by increasing the imidazole

concentration to 500 mM in a step gradient. Fractions were

pooled and placed in Spectrapor dialysis membrane (3000 Da

cutoff) and dialysed against 5 l low-salt buffer [150 mM NaCl,

20 mM imidazole, 40 mM Tris–HCl pH 8.0, 5%(w/v) glycerol,

2.5 mM CaCl2] at 277 K. A precipitate formed within the first

2 h of dialysis and was stored in a minimal amount of dialysate

at 277 K prior to cryocooling. Site-directed mutagenesis was

performed as described previously (McGeehan et al., 2005)

and the R35A mutant protein was expressed, purified and

crystallized identically.

2.2. X-ray diffraction data collection and structure
determination

The crystals obtained following dialysis were collected and

transferred to cryoprotectant solution (30% glycerol) prior to

cryocooling in liquid nitrogen. For the native protein crystal,

180 images with an oscillation width of 1.0� were collected at a

wavelength of 0.933 Å, while 90 1.0� images were collected for

the mutant protein crystal owing to high anisotropy. Data

extending to 2.8 Å were collected at 100 K on beamline ID14-2

(ESRF, Grenoble) using an ADSC Q4 CCD detector and

processing was performed with either XDS and XSCALE

(Kabsch, 1993) or MOSFLM (Leslie, 1992) and SCALA

(Collaborative Computational Project, Number 4, 1994).

Molecular replacement was carried out using Phaser (McCoy

et al., 2005) and the structures were refined with reiterative

rounds of model building using Coot (Emsley & Cowtan,
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Figure 1
Light-microscope image showing typical precipitate crystals formed
during dialysis. Single crystals with an approximate largest dimension of
100 mm can be seen among many small and fragmented crystals.

Table 1
X-ray crystal data, refinement and model statistics.

Values in parentheses are for the highest resolution shells.

Native R35A

Data collection
Space group P65 P65

Unit-cell parameters (Å, �) a = b = 128.72,
c = 137.51,
� = � = 90,
� = 120

a = b = 48.44,
c = 135.78,
� = � = 90,
� = 120

Resolution limits (Å) 50–2.8 (2.9–2.8) 50–3.0 (3.1–3.0)
Rmerge† (%) 13.8 (39.0) 27.7 (45.5)
I/�(I) 16.8 (7.7) 1.4 (1.9)
Completeness (%) 96.3 (93.7) 100 (100)

Refinement model statistics
No. of reflections 30225 3617
Rcryst/Rfree‡ (%) 23.7/26.9 24.9/26.7
No. of atoms

Protein 8696 1197
Water 4 0

B factors (Å2)
Protein 33.09 56.74
Water 13.58 n/a

R.m.s. deviations from ideal
Bond lengths (Å) 0.015 0.014
Angles (�) 1.579 1.690

† Rmerge =
P

hkl

P
i jIiðhklÞ � hIðhklÞij=

P
hkl

P
i IiðhklÞ, where hI(hkl)i is the mean

intensity of reflection I(hkl) and Ii(hkl) is the intensity of an individual measurement of
reflection I(hkl). ‡ Rcryst =

P
hkl

�
�jFobsj � jFcalcj

�
�=
P

hkl jFobsj, where Fobs is the observed
structure-factor amplitude and Fcalc is the calculated structure-factor amplitude. Rfree is
the same as Rcryst but for 5% of structure-factor amplitudes which were set aside during
refinement.



2004) and TLS-based refinement using REFMAC5 (Mur-

shudov et al., 1997). NCS restraints were used throughout,

except in the loop region consisting of residues 43–46.

Analysis of the structural data was performed with SFCHECK

and PROCHECK (Collaborative Computational Project,

Number 4, 1994) and the figures were produced with PyMOL

(DeLano, 2002).

The native and mutant protein structures were deposited in

the PDB with codes 3g5g and 3fya, respectively.

3. Results and discussion

3.1. Crystallization and data collection

Traditional sitting-drop and hanging-drop vapour-diffusion

methods of crystallizing C.Esp1396I resulted in poorly

diffracting and often split crystals. Through serendipity, whilst

purifying the protein it was noticed that a precipitate formed

during routine dialysis of the His-tagged protein and this was

identified as crystalline in nature by polarizing light micro-

scopy (Leica MZ12-5). Single crystals were observed with

largest dimensions of approximately 200 � 75 � 75 mm.

Harvesting of these crystals (Fig. 1) followed by X-ray

screening in-house (Xcalibur Nova, Oxford Diffraction)

provided diffraction data that were sufficient for indexing.

Both the native and R35A mutant proteins crystallized in

space group P65, although their crystals had different unit-cell

parameters (Table 1). There was a strong tendency for splitting

of these crystals and, in addition to the presence of secondary

lattices, reflections were often smeared, resulting in poor data

quality. Following extensive screening using the ESRF/EMBL

SC3 sample changer, complete data were collected from both

native and mutant C.Esp1396I crystals, one from each of

the representative unit cells. The native data suffered from

poor spot profiles and proved difficult to process with

MOSFLM. XDS produced much improved integration

statistics, although despite strong intensities [overall I/�(I) of

17] Rmerge remained high at 14%. The mutant data were much

weaker and also suffered from poor spot profiles. Processing

with XDS resulted in rejection of a high number of reflections,

compromising the overall completeness. MOSFLM was able

to process these mutant data with high completeness; how-

ever, this resulted in high Rmerge values. Following multiple

processing runs for both the native and the mutant data sets,

the best compromise between data quality and completeness

was achieved using XDS/XSCALE for the native data and

MOSFLM/SCALA for the mutant data. The data-collection

and processing statistics for both proteins are shown in Table 1.

3.2. Structure of native C.Esp1396I protein

The native structure was solved by molecular replacement

using a single monomer (chain A) from the previously solved

nucleoprotein structure (PDB code 3clc; McGeehan et al.,

2008) and yielded seven independent dimers in the asym-

metric unit. Despite the difficulties in processing these data,

the electron-density maps were of good quality (Fig. 2) and

refinement proceeded smoothly. Over 99% of the residues lie

in the preferred regions of the Ramachandran plot, with no

outliers, and the Rcryst/Rfree values and bond geometries are

reasonable for the resolution cutoff of 2.8 Å (Table 1).

As expected, the overall structure resembles that of the

protein in complex with DNA: a compact fold comprising five

�-helices per monomer, each with a characteristic helix–turn–

helix motif. Resolution limitations prevent a comprehensive

comparison of side-chain conformations between the free and

bound proteins. However, the large-scale rearrangements of

the structure are clear. Superposition of the A chains of the

bound and the free proteins reveals a global movement of the

recognition helix 3 of approximately 1.4 Å (Fig. 3). This hinge

action is centred on the dimer interface mediated by helix 5

and is consistent with an opening of the dimer upon DNA

binding. The distance between the recognition helices of the

dimer is increased by approximately 1–1.5 Å when bound to
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Figure 2
Representative density of the two alternate loop regions in native C.Esp1396I. Residues 42–48 are shown for (a) chain A and (b) chain N. The 2Fo � Fc

electron-density maps are contoured at 1.5�.



DNA, which may contribute to the significant 54� bend of the

operator DNA (McGeehan et al., 2008).

3.3. Flexibility within the loop region may contribute to
DNA-sequence recognition

Within the 14 copies of the monomer found in the asym-

metric unit of the native protein, there are two that exhibit

variation in a loop structure close to the DNA-binding inter-

face (residues 43–46; Fig. 4a). Release of NCS restraints in this

region allowed the building and refinement of an alternative

loop conformation into clearly interpretable electron density

(Fig. 2b). Compared with the other 12 monomers, which all

show remarkably consistent density in this region, the minor

conformation present in chains L and N adopts a markedly

different backbone path. Residues from each of the two

conformations occupy favoured regions of the Ramachandran

plot and a schematic analysis of temperature factors (Fig. 5)

demonstrates B-factor values that are similar to those of other

loop regions in the structure. In fact, although the major loop

conformation has B factors that are around 14% higher

(38 Å2) than the average for the whole structure (33 Å2), the B

factors for residues 43–46 in chains L and N are 2–3% lower,

suggesting increased rigidity afforded by packing interactions.

Although higher resolution data are required to gain an

accurate refinement of the temperature factors, it appears

from these data that there is clear static disorder between two

alternative loop conformations in these crystals.

In the alternative loop conformation, individual C� atoms

are displaced by up to �5 Å with significant side-chain re-

arrangement (Fig. 4b). This is evident for the side chain of

Arg46, where the NH2 group is displaced by 2.7 Å between

the two conformations, and more dramatically for residue

Asn44, where a rotation of approximately 180� about the C�

atom results in a maximum displacement of the terminal O

atoms of around 10 Å. This alternative conformation appears

only twice in 14 chains in the native protein and on both of

these occasions residue Arg43 is involved in intermolecular

hydrogen bonding to an adjacent monomer (residue Asp64).

Presumably, the free-energy difference between the two

conformations is small and reflects the local environment

afforded by specific packing interactions. It is possible that this
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Figure 4
The native protein has two distinct loop conformations. (a) All 14 monomers from the asymmetric unit have been overlaid (r.m.s.d. < 1 Å for 180 main-
chain atoms excluding residues proximal to the loop). (b) Chain A and chain N superimposed, highlighting the degree of side-chain movement between
the alternative loop regions (r.m.s.d. = 0.095 Å for 180 main-chain atoms excluding residues proximal to the loop). Chain A is shown in light colours and
chain N in dark colours; the side chains of Arg46, Ser45, Asn44 and Arg43 are shown in yellow, blue, red and green, respectively.

Figure 3
Comparison of free and bound C.Esp1396I structures. Chains A and B of
the free protein (red) and chains A and B of the DNA-bound protein
(green; PDB code 3clc) were overlaid, giving an r.m.s.d. of 0.39 Å (201
main-chain atoms). The recognition helix moves 1.4 Å upon DNA
binding as calculated by taking the average distances between
corresponding C� atoms within the recognition helix.



region contributes to DNA binding and sequence-specificity:

this loop is located immediately adjacent to the recognition

helix 3, which inserts into the major groove of DNA. It is likely

that a direct readout mechanism operates to discriminate

between subtly different operator sequences. A degree of

flexibility in an extended recognition motif could help to

explain some of the features of this control system at the

biological level. C.Esp1396I has three cognate operator sites,

binding each site with a high degree of specificity and a range

of affinities over several orders of magnitude (Bogdanova et

al., 2009). In order to achieve this biologically important

discrimination, it is likely that the DNA-binding interface

incorporates a degree of structural flexibility. Whether this

loop region imparts the necessary degree of plasticity to

explain the binding mechanism of multiple recognition sites

will hopefully be revealed by high-resolution nucleoprotein

studies.

3.4. Solution and comparison of R35A mutant structure

Previous EMSA studies on this C protein indicated that the

single amino-acid change R35A completely abolished binding

to a cognate 35 base-pair operator site (McGeehan et al.,

2008). The C.Esp1396I protein–DNA structure revealed that

Arg35 is a strong hydrogen-bonding partner to a conserved

guanine located in the DNA-recognition sequence and also

stacks with the adjacent thymine base. However, full inter-

pretation of the EMSA binding data hinges on the structural

consequences of this mutation, since it could simply destabi-

lize the structure of the protein. The structural integrity of this

mutant protein was therefore explored by crystallography.

The R35A mutant protein crystals contained only one

dimer in the asymmetric unit. However, analysis of symmetry-

related chains revealed a packing arrangement resembling

that of the native protein: a small rotation and translation of

adjacent dimers relative to the native crystal packing resulted

in a significantly smaller unit cell. It is possible that a degree of

heterogeneity between these two crystal forms compounded

our search for a single discrete lattice in earlier experiments.

Extensive screening of these crystals was productive for the

collection of complete data, although the overall intensities

were weak [I/�(I) of 1.4; Table 1]. Despite this, following

molecular replacement using the C.Esp1396I monomer as a

search model clear alternative backbone paths for the loop

region (residues 43–46) from each monomer were observed in

2Fo � Fc and Fo � Fc electron-density maps. In addition,

following refinement clear negative density surrounding

Arg35 from the model confirmed the presence of the R35A

mutation. Although these data were not sufficient to uniquely

define the side-chain conformations, they confirmed that the

structure of the R35A mutant was essentially the same as that

of the wild-type protein. We conclude from these data that the

significantly reduced binding affinity of the R35A mutant is a

direct consequence of the absence of the Arg35 side chain and

does not arise from a conformational change in the protein.

This validates our previous hypothesis that the side chain of

Arg35, which contacts a conserved TG dinucleotide lying

outside the classic inverted-repeat recognition sequence, is

central to the overall binding affinity (McGeehan et al., 2008).

Interestingly, the flexible loop region identified in the native

structure is also apparent in the mutant structure. Despite only

possessing one dimer in the asymmetric unit, each monomer

presents an alternative conformation, each corresponding to

one of the two states seen in the native protein. Fig. 6 shows

the refined structures of the mutant and native proteins

superimposed and highlights the position of the Arg35 resi-
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Figure 6
C.Esp1396I R35A mutant overlaid with chains M and N of the native
protein. The main-chain atoms of the R35A protein (blue) were overlaid
with the native protein (red), giving an r.m.s.d. of 0.48 Å for 408 atoms.
The position of the Arg35 side chain in the native protein is shown.

Figure 5
Temperature-factor analysis of a native dimer. Chains K and L of the
native free protein are shown as cartoons, where blue represents low and
orange high B factors (C� atoms). A colour scale bar illustrates the
B-factor range from 27 to 41 Å2. The C-terminal residues have the highest
B factors (around 20% higher than the mean) in addition to the
N-terminal regions of the recognition helices. The core of the protein
dimer, including the N-terminal half of helix 4 (shown in dark blue), has
lower than average B factors as expected. This dimer has both alternative
loop conformations, which are highlighted with arrows. The major
conformation (A) has slightly higher B factors compared with the minor
conformation (B), although both are close to the average for all residues.



dues that flank the DNA-binding interface. As expected, the

overall structure of the two proteins is very similar, with the

greatest degree of variation again arising from the flexible

loop region (residues 43–46) between helix 3 and helix 4. Clear

electron density for each of the conformational states gives

further weight to the interpretation that two local energy

minima exist in the free protein rather than a highly mobile

loop.

High-resolution structures would assist greatly in deter-

mining the role of the conformational changes exhibited by

C.Esp1396I upon DNA binding. To this end, further X-ray

crystallography data sets of bound protein have been obtained

with various lengths and sequences of DNA and structural

analysis is in progress. Understanding the mechanisms that

underlie the ability of C.Esp1396I to bind multiple DNA-

recognition sequences and thus finely tune the expression of

the restriction–modification system are fundamental to a

complete understanding of this intricate control system.
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